Publications

This list of publications is periodically updated, see my google scholar for a more up-to-date list!

I broadly work on search-based motion planning for single and multi-agent systems. My specific research interest is in (1) designing better heuristic search algorithms, (2) multi-agent motion planning and coordination (e.g. MAPF), and (3) combining search with machine learning.

2024

  1. 2024_generalized_ecbs.png
    Unconstraining Multi-Robot Manipulation: Enabling Arbitrary Constraints in ECBS with Bounded Sub-Optimality
    Yorai Shaoul* , Rishi Veerapaneni*, Maxim Likhachev , and Jiaoyang Li
    In Proceedings of the International Symposium on Combinatorial Search (SoCS) , 2024
  2. 2024_scaling_lifelong_mapf.png
    Scaling Lifelong Multi-Agent Path Finding to More Realistic Settings: Research Challenges and Opportunities
    He Jiang , Yulun Zhang , Rishi Veerapaneni, and Jiaoyang Li
    In Proceedings of the International Symposium on Combinatorial Search (SoCS) , 2024
  3. 2024_space_order_cbs.png
    From Space-Time to Space-Order: Directly Planning a Temporal Planning Graph by Redefining CBS
    Yu Wu , Rishi Veerapaneni, Jiaoyang Li , and Maxim Likhachev
    arXiv preprint arxiv:2404.15137, 2024
  4. 2024_efficient_data_lh.png
    A Data Efficient Framework for Learning Local Heuristics
    Rishi Veerapaneni*, Jonathan Park* , Muhammad Suhail Saleem , and Maxim Likhachev
    In Proceedings of the International Symposium on Combinatorial Search (SoCS) , 2024
  5. 2024_mapf_3d_warehouse.png
    MAPF in 3D Warehouses: Dataset and Analysis
    Qian Wang* , Rishi Veerapaneni*, Yu Wu , Jiaoyang Li , and Maxim Likhachev
    International Conference on Automated Planning and Scheduling (ICAPS), 2024
  6. 2024_improving_mapf_search.png
  7. 2024_btpg.png
    Bidirectional Temporal Plan Graph: Enabling Switchable Passing Orders for More Efficient Multi-Agent Path Finding Plan Execution
    Yifan Su , Rishi Veerapaneni, and Jiaoyang Li
    AAAI Conference on Artificial Intelligence (AAAI), 2024

2023

  1. 2023_preprocessing_contacts.png
    Preprocessing-Based Planning for Utilizing Contacts in Semi-Structured High-Precision Insertion Tasks
    Muhammad Suhail Saleem , Rishi Veerapaneni, and Maxim Likhachev
    IEEE Robotics and Automation Letters (RAL), 2023
  2. 2023_local_heuristic.png
    Learning Local Heuristics for Search-Based Navigation Planning
    Rishi Veerapaneni, Muhammad Suhail Saleem , and Maxim Likhachev
    International Conference on Automated Planning and Scheduling (ICAPS), 2023
  3. 2023_effective_integration.png
    Effective Integration of Weighted Cost-to-Go and Conflict Heuristic within Suboptimal CBS
    Rishi Veerapaneni, Tushar Kusnur , and Maxim Likhachev
    AAAI Conference on Artificial Intelligence (AAAI), 2023

2022

  1. 2022_space_level.png
    Minimizing Coordination in Multi-Agent Path Finding with Dynamic Execution
    Aidan Wagner* , Rishi Veerapaneni*, and Maxim Likhachev
    AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE), 2022
  2. 2022_nonblocking.png
    Non-Blocking Batch A* (Technical Report)
    Rishi Veerapaneni, and Maxim Likhachev
    arXiv preprint arxiv:2208.07031, 2022

2020

  1. 2020_op3.png
    Entity Abstraction in Visual Model-Based Reinforcement Learning
    Rishi Veerapaneni*, John D. Co-Reyes* , Michael Chang* , Michael Janner , Chelsea Finn , Jiajun Wu , Joshua Tenenbaum , and Sergey Levine
    In Conference on Robot Learning (CoRL) , 2020

2018

  1. 2018_adversarial_examples.jpg
    Tricking Neural Networks: Create Your Own Adversarial Examples
    Daniel Geng , and Rishi Veerapaneni
    Machine Learning @ Berkeley, 2018

2017

  1. 2017_segmentation.jpg
    Adaptive Estimation of Active Contour Parameters Using Convolutional Neural Networks and Texture Analysis
    Assaf Hoogi , Arjun Subramaniam* , Rishi Veerapaneni*, and Daniel L. Rubin
    IEEE Transactions on Medical Imaging, 2017